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This document contains an overview of research and work performed and
published at the University of Florida from October 1, 2009 to October 31, 2013
pertaining to proposal 57306CS: Multi-object Detection and Discrimination
Algorithms.

Overview
Topics By Year

1. 2009-2010
* A multimodal matching pursuits dissimilarity measure applied to
landmine/clutter discrimination
* Multiple Instance Feature Learning for Landmine Detection in Ground
Penetrating Radar Imagery
* Cross Entropy Optimization of the Random Set Framework for
Multiple Instance Learning
e Simultaneous Feature and HMM Model Learning for Landmine
Detection using Ground Penetrating Radar
2. 2010-2011
* A Bayesian approach to localized multi-kernel learning using the
relevance vector machine
* DynaMax+ ground-tracking algorithm
* Comparison of algorithms for finding the air-ground interface in
ground penetrating radar signals
* Random set framework for multiple instance learning
* Support vector data description for detecting the air-ground interface
in ground penetrating radar signals
3. 2011-2012
* An efficient multiple layer boundary detection in ground-penetrating
radar data using an extended Viterbi Algorithm
* Reciprocal pointer chains for identifying layer boundaries in ground
penetrating radar data

4, 2012-2013
* Optimal Fusion of Alarm Sets from Multiple Detectors Using Dynamic
Programming

* Improvements on Multiple Instance Learning Hidden Markov Model
for landmine detection in ground penetrating radar data

2009-2010

A multimodal matching pursuits dissimilarity measure applied to
landmine/clutter discrimination



The focus of this research is the Matching Pursuits Dissimilarity Measure (MPDM),
which is an effective way to compare signals that are sparsely approximated using a
Matching Pursuits method. The CAMP algorithm uses an MPDM distance measure in
Competitive Agglomeration clustering to model and classify signals. The MPDM
approach can only compare signals originating from a single source. Many landmine
detection systems use multiple sensors to make simultaneous measurements of the
same region of interest. In this research a Multimodal MPDM that can be used with
CAMP to fuse signals from multiple sensors has been developed and investigated
(Glenn et al, 2010). We demonstrate the effectiveness of the Multimodal MPDM over
the single sensor (hand-held device) MPDM in improving discrimination of
landmines from clutter objects.

CAMP has been applied to the landmine/clutter discrimination problem in a single
electromagnetic induction sensor setting in the past. The same time-domain signals
employed in that work are used in

current experiments. In this work we also incorporate signal channels comprised of
features captured from a frequency-swept, continuous-wave radar system. We
report on evaluation of the Multimodal MPDM approach using data collected at
three test sites with buried landmines and clutter objects, two temperate sites in the
eastern United States and one arid site in the western United States.

The CAMP algorithm using three different single signals, the new Multimodal MPDM
using these signals, and confidence-level fusion of the single signal CAMP outputs,
were tested to compare their performance. The testing was performed on a dataset
consisting of signals collected from buried anti-tank and anti-personnel landmines,
metallic and non-metallic emplaced clutter objects, and regions with no emplaced
object. The reported results are from resubstitution testing, and therefore indicate a
best-case result.

Figure below shows Receiver Operating Characteristic (ROC) plots for the CAMP
algorithm using two metal detector channels and the GPR channel individually, the
confidence level fusion of the outputs

using a naive Bayesian model, and CAMP using the Multimodal MPDM with all three
channels. The single signals MD1, MD2, and GPR are from co-located sensors on the
collection device. The GPR signal is a feature of the radar’s frequency magnitude
output, made from the reconstruction error of the best single sample linear
predictor. The Multimodal MPDM uses the data from both the MD1, MD2, and GPR
channels simultaneously.



Multiple Instance Feature Learning for Landmine Detection in Ground
Penetrating Radar Imagery

Our research on this topic focused on Multiple instance learning (MIL), which is a
technique used for identifying a target pattern within sets of data. In MIL, a learner
is presented with sets of samples; whereas in standard techniques, a learner is
presented with individual samples. The MI scenario is encountered given the nature
of landmine detection in GPR data, and therefore landmine detection results should
benefit from the use of multiple instance techniques. Previously, a random set
framework for multiple instance learning (RSF-MIL) was proposed which utilizes
random sets and fuzzy measures to model the MIL problem. As noted below, an
improved version C-RSF-MIL was recently developed showing a increase in learning
and classification performance. This new approach is used to learn and characterize
features of landmines within GPR imagery for the purposes of classification (Bolton
etal, 2010). Experimental results show the benefits of using RSF-MIL for landmine
detection in GPR imagery.



For example in each of the 10 folds during crossvalidation, features indices
congruent to zero, one, two, three and four mod 5 correspond to a horizontal,
vertical, rising, falling, and non-edge membership values (respectively) in the
second downtrack bin (left to right). Note that in both learned germ and grain pairs,
features corresponding to rising edges start at high values and slowly decrease
when traversing the vector from left to right as shown above. Note that the opposite
is true for the falling edge{ starting low and steadily increasing in value. Note that
essentially all non-edge features are learned to be negligible. Thus each germ and
grain pair has learned a hyperbolic signature. Note that the second germ and grain
pair has a high horizontal feature at index 16 and lower rising and falling edge
signatures. This indicates that it has learned a slightly different, elongated
hyperbolic signature. The model has clearly benefited from using two germ and
grain pairs to represent two distinct hyperbolic signatures. This benefit is gained
from using the random set framework which permits multiple target concept
models.

Classification results of C-RSF-MIL are compared to the EHD-kNN algorithm, which
is currently the state- of- the-art in landmine detection using GPR imagery. Both
algorithms under test were run on a collection of GPR images consisting of
approximately 800 landmines and 1300 non-landmines, using 10-fold
crossvalidation. The EHD classifier performs classification using kNN based
approach which makes use of approximately 50- 200 prototypes (dependent on
crossvalidation fold) and uses Euclidean distance as the metric. An example of a
random set model consisting of two germ and grain pairs is shown in Figure
below. The hyperbolic signal has been characterized.



New formulations of MIL: Cross Entropy Optimization of the Random Set
Framework for Multiple Instance Learning

As noted previously, Multiple instance learning (MIL) is a recently researched
technique used for learning a target concept in the presence of noise. A random set
framework for multiple instance learning (RSF- MIL) was proposed in previous
research; however, the investigated optimization strategy did not permit the
harmonious optimization of model parameters. This research focused on a cross
entropy, based optimization strategy is investigated (Bolton et al, 2010).
Experimental results on synthetic examples, benchmark and landmine data sets
illustrate the benefits of the researched optimization strategy.

The approach was validated on synthetic data shown above, before experimentation
on landmine data. R-RSF-MIL is compared to CRSF- MIL using these two synthetic
datasets constructed to highlight the difference in optimization strategy. In the
Disjunct dataset, a bag is constructed by drawing 15 two dimensional vectors from a
uniform distribution between -20 and 20, in each dimension. Bags are labeled



positive if there exists a constituent sample that lies within distance 1 of point (-5,3)
or point (2,0). Bags are labeled negative, otherwise.

In the Conjunct dataset, Fig. above Optimization of R-RSF-MIL and C-RSF-MIL on the
Toy data set at three stages. Germ and grain pairs are illustrated in black to indicate
areas with non-negligible probability of intersection. bags are labeled positive if
there exists a constituent sample that lies within distance one of point (-5,3) and
there exists a sample that lies within a distance one of point and (2,0). Bags are
labeled negative, otherwise. Five hundred positive and negative bags are
constructed for each data set. Both RRSF- MIL and C-RSF-MIL are optimized on each
data set using 2 germ and grain pairs, which are initialized randomly within [-
10,10]x[-10,10]. In each data set there are two areas of diverse density: near (-5,3)
and (2,0), illustrated in Figure above.

The average (over 50 experiments) Area Under the receiver operating characteristic
Curve (AUC) for R- RSF-MIL and CRSF- MIL on the Conjunct data set was 0.98 and
0.98, respectively; the AUC results on the Disjunct data set were 0.99 and 0.85,
respectively. In R-RSF-MIL, each of the germs were attracted to areas of diverse
density nearest to its initialization point (irrespective of which area of diverse
density the other germ and grain pair was attracted to). However, in C-RSFMIL, both
germ and grain pairs were attracted to different areas of diverse density,
irrespective of initialization. The results on the Disjunct data set illustrate this
occurrence since it is necessary for both areas of diverse density to be identified by
a germ and grain pair for correct classification. This was achieved using C-RSF-MIL
since the germ and grain pairs are optimized in harmony. An example of this is
occurrence is shown in Figure 2, where learned germ and grain models of both R-
RSF-MIL and C-RSF-MIL (from one of the 50 experiments) are shown at various
stages of optimization on the Disjunct toy data set.



Simultaneous Feature and HMM Model Learning for Landmine Detection using
Ground Penetrating Radar

Hidden Markov Models (HMMs) have been widely used in landmine detection with
Ground Penetrating Radar (GPR) data; however, to the best of our knowledge, there
are no other studies that investigated the simultaneous learning of the features and
the HMM parameters. In our research here, we present a novel method based on
Gibbs sampling that both learns a feature extraction model as well as an HMM
model (Zhang et al, 2010). The new system allows for the training of new features
when the sensor systems are different. Experiments show that our algorithm is
more robust to initialization and can find better solutions on GPR landmine data
sets.

2010-2011

A Bayesian approach to localized multi-kernel learning using the relevance
vector machine

Multi-kernel learning has become a popular method to allow classification models
greater flexibility in representing the relationships between data points. This
approach has evolved into localized multi-kernel learning, which creates
classification models that have the ability to adapt to a multi-scale feature-space.
The advantages of such an approach are often hampered by additional parameters
and hyper-parameters involved in creating this model, not to mention the greater
likelihood of over-training. Additionally, existing methods to create a localized
multi-kernel classifier rely on partitioning the feature-space, followed by applying a



multi-kernel to the partitioned data points. We introduce a Bayesian approach to the
localized multi-kernel machine. The new model is shown to provide greater
classification abilities by learning the local scales of the feature-space without the
need to partition the data. Also, the Bayesian formulation helps the model to be
resistant to over-training. We demonstrate the models effectiveness on two
landmine detection datasets, each from a different sensor type.
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Figure 1: GPR (left) with a minimum SSE at (.35, .8), WEMI (right) with a minimum SSE at (.3, .75)
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Figure 2: Mean number of relevant vectors, GPR (left) and WEMI (right)

DynaMax+ ground-tracking algorithm

In this paper, we propose a new method for performing ground-tracking using
ground-penetrating radar (GPR). Ground-tracking involves identifying the air-
ground interface, which is usually the dominant feature in a radar image but
frequently is obscured or mimicked by other nearby elements. It is an important
problem in landmine detection using vehicle-mounted systems because antenna
motion, caused by bumpy ground, can introduce distortions in downtrack radar
images, which ground-tracking makes it possible to correct. Because landmine
detection is performed in real-time, any algorithm for ground-tracking must be able
to run quickly, prior to other, more computationally expensive algorithms for
detection. In this investigation, we first describe an efficient algorithm, based on



dynamic programming, that can be used in real-time for tracking the ground. We
then demonstrate its accuracy through a quantitative comparison with other
proposed ground-tracking methods, and a qualitative comparison showing that its
ground-tracking is consistent with human observations in challenging terrain.



Comparison of algorithms for finding the air-ground interface in ground
penetrating radar signals

In using GPR images for landmine detection it is often useful to identify the air-
ground interface in the GPR signal for alignment purposes. A number of algorithms
have been proposed to solve the air-ground interface detection problem, including
some which use only A-scan data, and others which track the ground in B-scans or
C-scans. Here we develop a framework for comparing these algorithms relative to
one another and we examine the results. The evaluations are performed on data that
have been categorized in terms of features that make the air-ground interface
difficult to find or track. The data also have associated human selected ground
locations, from multiple evaluators, that can be used for determining correctness. A
distribution is placed over each of the human selected ground locations, with the
sum of these distributions at the algorithm selected location used as a measure of its
correctness. Algorithms are also evaluated in terms of how they affect the false
alarm and true positive rates of mine detection algorithms that use ground aligned
data.

Table 2. Results of comparisons of algorithm ground estimates human opinions, sorted by best average.

Algorithm Average x100 | Best x100 | # Best = 0 | Time (sec/scan)
Dynamax+ 95 98 286 0.071
Viterbi Ground Max 94 98 389 0.024
Viterbi Ground SVDD || 94 97 457 0.114
SVDD-Ground 93 95 828 0.086

X1 92 94 899 0.002
Snakes 89 92 1354 0.790
Polyfit SVDD Snapped || 85 88 1906 0.062
Polyfit Max Snapped 85 88 1970 0.003
FastSnakes 84 86 2243 0.296
Global Max 81 83 2847 1.6 x 1074
Polyfit Max 73 76 2264 0.003
Polyfit SVDD 73 75 2263 0.062

Random set framework for multiple instance learning

Multiple instance learning (MIL) is a technique used for learning a target concept in
the presence of noise or in a condition of uncertainty. While standard learning
techniques pres- ent the learner with individual samples, MIL alternatively presents
the learner with sets of samples. Although sets are the primary elements used for
analysis in MIL, research in this area has focused on using standard analysis
techniques. In the following, a random set framework for multiple instance learning
(RSF-MIL) is proposed that can directly perform analysis on sets. The proposed



method uses random sets and fuzzy measures to model the MIL problem, thus
providing a more natural mathematical framework, a more general MIL solution,
and a more versatile learning tool. Comparative experimental results using RSF-MIL
are presented for benchmark data sets. RSF-MIL is further compared to the state-of-
the-art in landmine detection using ground penetrating radar data.

Table 2

AUC for RSF-MIL on benchmark datasets.
Algorithm Musk 1 Musk 2
RSF-MIL 0.948 0.953
MIRVM 0.942 0.987
MiIBoost 0.899 0.964
MILR 0.846 0.795
MISVM 0.899 -

Support vector data description for detecting the air-ground interface in
ground penetrating radar signals

In using GPR images for landmine detection it is often useful to identify the air-
ground interface in the GRP signal for alignment purposes. A common simple
technique for doing this is to assume that the highest return in an A-scan is from the
reflection due to the ground and to use that as the location of the interface. However
there are many situations, such as the presence of nose clutter or shallow sub-
surface objects, that can cause the global maximum estimate to be incorrect. A
Support Vector Data Description (SVDD) is a one-class classifier related to the SVM
which encloses the class in a hyper-sphere as opposed to using a hyper-plane as a
decision boundary. We apply SVDD to the problem of detection of the air-ground
interface by treating each sample in an A-scan, with some number of leading and
trailing samples, as a feature vector. Training is done using a set of feature vectors
based on known interfaces and detection is done by creating feature vectors from
each of the samples in an A-scan, applying the trained SVDD to them and selecting
the one with the least distance from the center of the hyper-sphere. We compare
this approach with the global maximum approach, examining both the performance
on human truthed data and how each method affects false alarm and true positive
rates when used as the alignment method in mine detection algorithms.



Table 1. Results of evaluation of ground detection algorithms with respect to truthed ground for data sets A and B with
varying number of estimates from 1 to 5.

n | Algorithm RMSE Max error Frames /w Error > 5 | Scans /w Error > 5
A B A B A B A B

1 | Global Max 8.93 48.24 250 408 169 704 339 7300
SVDD Ground | 6.86 6.05 248 350 25 95 74 190

2 | Global Max 4.57 7.79 244 351 142 152 202 253
SVDD Ground | 2.85 0.63 223 27 5 33 11 59

3 | Global Max 3.19 3.39 199 129 133 111 170 137
SVDD Ground | 1.55 0.41 223 27 1 22 2 32

4 | Global Max 2.26 2.79 122 129 130 98 162 119
SVDD Ground | 0.04 0.38 3 27 0 19 0 27

5 | Global Max 2.18 2.49 92 117 130 98 162 116
SVDD Ground | 0.03 0.32 2 27 0 15 0 21

Figure 4. SVDD Ground and Global Max estimates in a frame for data set A.

2011-2012

An efficient multiple layer boundary detection in ground-penetrating radar
data using an extended Viterbi Algorithm

In landmine detection using vehicle-mounted ground-penetrating radar (GPR)
systems, ground tracking has proven to be an effective pre-processing step.
Identifying the ground can aid in the correction of distortions in downtrack radar
data, which can result in the reduction of false alarms due to ground anomalies.
However, the air-ground interface is not the only layer boundary detectable by GPR
systems. Multiple layers can exist within the ground, and these layers are of
particular importance because they give rise to anomalous signatures below the
ground surface, where target signatures will typically reside.



In our research, an efficient method was developed for performing multiple ground
layer-identification in GPR data. The method is an extension of the dynamic
programming-based Viterbi algorithm, finding not only the globally optimal path,
which can be associated with the ground surface, but also locally optimal paths that
can be associated with distinct layer boundaries within the ground. In contrast with
the Viterbi algorithm, this extended method is uniquely suited to detecting not only
multiple layers that span the entire antenna array, but also layers that span only a
subset of the channels of the array. Furthermore, it is able to accomplish this while
retaining the efficient nature of the original Viterbi scheme.

A sample of layer tracking results are shown below.

Our method was shown to accurately detect layer boundaries using an extended
Viterbi method called reciprocal pointer chains while retaining the complexity of the
original Viterbi algorithm. This is important because the typical application scenario
we anticipate is use by a vehicle-mounted system performing landmine detection in
real-time.

Reciprocal pointer chains for identifying layer boundaries in ground
penetrating radar data

Identifying the ground surface in ground-penetrating radar (GPR) data is useful and
can be done efficiently and accurately using the Viterbi algorithm. This involves
representing the radar image as a trellis graph and solving for the optimal path. To
identify multiple layer boundaries in a radar image in this manner, it is necessary to



find multiple disjoint paths through the trellis. Two main types of algorithms
currently exist that find the k best disjoint paths whose aggregate sum is minimized.
However, this criterion has drawbacks. Instead, we have researched and developed
a novel criterion for choosing multiple disjoint paths in a trellis that we call the
reciprocal pointer chain. This criterion has both a nice intuitive and theoretical
justification, and leads to an algorithm with better qualitative results and
significantly lower computational complexity than any of the methods previously
proposed.

Sample results are shown below.

Our developed algorithm computes RPCs in the trellis representation of the GPR
image and declares a subset of these to be layer boundaries. First, the left and right
backpointers are computed using the Viterbi algorithm, which is run twice and is
O(CNZ2). Next, all of the RPCs in the trellis are computed from the backpointers. This
is straightforward and can be done with an algorithm similar to a depth-first search.
This stage of the algorithm is O(CN). From there, only those RPCs that are longer
than some minimum length and more probable than some threshold are kept. In this
way, the algorithm determines the number of layer boundaries automatically. We
can avoid explicitly including a dependence on the number of RPCs in the
computational complexity because we can bound the number of possible RPCs to be
< CN. Therefore, the complexity of the combined algorithm in the worst case is
O(CNZ2), which is the same as the original Viterbi algorithm.
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Optimal Fusion of Alarm Sets from Multiple Detectors Using Dynamic
Programming



Automated target detection is a vast field encompassing many technologies and
methodologies. In a typical approach, data from a sensor is organized into discrete
points of interest, or alarms, where the potential presence of a target is evaluated. A
detector produces a confidence score indicating the relative likelihood that an
observation at a point corresponds to a target. A confidence-based algorithm serves
as a binary classifier that labels data as either target or non-target by setting an
operating or decision threshold, t. In other words, all points with confidence c > t are
considered targets, and all points with c < t are considered non targets. In this
discussion, we refer to a sensor-algorithm pair as a detector, and a discrete
observation or point of interest as an alarm.

The performance of a detection algorithm in the field depends on its chosen
operating threshold and can be evaluated in a number of ways. One way to evaluate
it is by simple classifier accuracy—the percentage of accurately classified targets
and non-targets. However, this measure fails to take into account imbalanced class
distributions and the different costs associated with missed detections and false
positives. Imbalanced class distributions can be particularly troublesome in target
detection, where non-target observations tend to greatly outnumber target
observations. A better performance evaluation tool is the receiver operating
characteristic (ROC) curve. A ROC curve can illustrate the performance of an
algorithm for all possible operating thresholds simultaneously.

Fusion methods can help with both performance assessment and optimization.
However, typical fusion methods require that multiple detectors operate on the
same points of interest. This allows complementary information from multiple
detectors to aid the binary decision on the presence or absence of a target at a given
point. A problem occurs when multiple sensors produce alarms asynchronously so
that points of interest from different sensors do not coincide. In this case, typical
fusion methods are not applicable.

Our research seeks to address the problem of joint performance assessment and
optimization of multiple detectors when the sets of alarms given to or produced by
each detector are disjoint or independent. To produce a ROC curve characterizing
the joint performance of a set of alarms, a total ordering must be imposed on the
elements of the set. The act of putting the alarms in order is a type of fusion we refer
to as alarm set fusion (ASF). ASF differs from typical fusion methods in that instead
of leveraging complementary information from multiple detectors to improve
binary target decisions on individual points of interest, the properties of entire sets
of alarms are leveraged to put the combined set of alarms into some optimal order.
For example, a detector that tends to produce many true alarms with few false
alarms should have its alarms precede those of a detector that produces more false
alarms than true, as this will produce a better joint ROC curve. This ordering
problem can also be thought of as the problem of mapping the relative confidence
output of each detector to some absolute scale. In either case, the relative order of
alarms within a single detector are meaningful and should be maintained, thus only
monotonic mappings are permissible.



We propose a method using dynamic programming to determine the best ordering
of alarms between multiple detectors while maintaining the order of alarms within
a single detector (Smock et al.). The ordering of alarms produced during training
yields a ROC curve having the greatest area under-the-curve (AUC) achievable with
any monotonic mapping or ordering. Additionally, this training method yields a
monotonic function that can be used to map alarms from the different detectors into
an absolute range so that they can be meaningfully compared.

Initial results on GPR and EMI data show the efficacy of this method when applied
using 10 fold crossvalidation. ROC curves for a GPR-based detector, an EMI-based
detector, and their fusion using the specific ASF method below. The proposed fusion
method demonstrates that the two detectors produce complementary information
and a significant improvement over the performance

of the individual detectors is achieved. The un-normalized false alarm rate (FAR) is
shown to illustrate a real-valued cost associated with false positives, which must be
considered when choosing an operating threshold.

Improvements on Multiple Instance Learning Hidden Markov Model for
landmine detection in ground penetrating radar data

In ground penetrating radar (GPR) images, uncertainty is present. For example,
there are areas (subimages or feature sets) in an image that contain a target and
areas that do not. However, ground truth is provided only per image and not for the
subimages. Therefore this learning scenario provides one class label for multiple
instances.



The multiple instance learning (MIL) model has also successfully been used in
landmine detection to eliminate the problems associated with the bounding box
approach, and has shown considerable success. Previously, hidden Markov model
(HMM) based algorithms that utilize time series data are known to be very useful in
landmine detection. Previously, we developed MI-HMM which learns an HMM using
MIL and in the following we extend this discussion and present experimental
results.

In our research we test using a real-world landmine dataset (Bolton et al.). In GPR
images, scanning from left to right, a landmine signature would appear as a rising
edge followed by a falling edge. Therefore, edge features are computed from GPR
images and edge feature sequences are constructed for each horizontal image scan.
The goal is to learn the horizontal patterns indicative of a landmine signature using
an HMM model. In our experiments, the MI-HMM is compared to a state-of-the-art
HMM; a benchmark approach that is currently used in the field, which is referred to
hereafter as the "standard HMM".

ROC results for the both the standard HMM and the MI-HMM without sequence
trimming.



ROC results for the both the standard HMM and the MI-HMM using the sequence
trimming are shown below. The ROC result of the sequence trimmer only is also
presented and called "Prescreener” (not to be confused with the prescreening
algorithm).



